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Abstract
Reference ontologies provide a shared vocabulary and knowledge resource for their domain. Manual
construction enables them to maintain a high quality, allowing them to be widely accepted across their
community. However, the manual development process does not scale for large domains. We present
a new methodology for automatic ontology extension and apply it to the ChEBI ontology, a prominent
reference ontology for life sciences chemistry. We trained a Transformer-based deep learning model on
the leaf node structures from the ChEBI ontology and the classes to which they belong. The model is
then capable of automatically classifying previously unseen chemical structures. The proposed model
achieved an overall F1 score of 0.80, an improvement of 6 percentage points over our previous results on
the same dataset. Additionally, we demonstrate how visualizing the model’s attention weights can help
to explain the results by providing insight into how the model made its decisions.
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1. Introduction

Ontologies represent knowledge in a way that is both accessible to humans and is machine
interpretable. Reference ontologies provide a shared vocabulary for a community, and are
successfully being used in a range of different domains. Examples include the OBO ontologies
in the life sciences [1], the Financial Industry Business Ontology for the financial domain [2],
and the Open Energy Ontology in the energy domain [3]. While these ontologies differ in many
respects, they share one important feature: they are manually created by experts using a process
by which each term is manually added to the ontology including a textual definition, relevant
axioms, and ideally some additional documentation. Often, this process involves extensive
discussions about individual terms. Hence, developing such ontologies is a time-intensive and
expensive process. This leads to a challenge for ontologies that cover a large domain.

For example, the ChEBI (Chemical Entities of Biological Interest) ontology [4] is the largest
and most widely used ontology for the domain of biologically relevant chemistry in the public
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domain. It currently (as of June 2021) contains 59,122 fully curated classes, which makes it large
in comparison to other reference ontologies. ChEBI is largely manually maintained by a team of
expert curators. This is an essential prerequisite for its success, because it enables it to capture
the terminology and classification logic shared by chemistry experts. However, the number of
chemicals covered by ChEBI is dwarfed by the 110 million chemicals in the PubChem database
[5], which itself is not comprehensive. The manually curated portion of ChEBI only grows at a
rate of around 100 entries per month, thus will only ever be able to cover a small fraction of the
chemicals that are in its domain.

ChEBI tries to navigate this dilemma by extending the manually curated core part of the
ontology automatically using the ClassyFire tool [6]. This approach has tripled ChEBI’s coverage
to 165,000 classes (as of June 2021). However, there are limitations to this approach. Firstly,
ClassyFire uses a different underlying classification approach to ChEBI (e.g. conjugate bases
and acids are not distinguished), thus, mapping to ChEBI loses classification precision. More
importantly, ClassyFire is rule-based and while the extension of the ontology is automated, the
creation and curation of the ClassyFire’s rules is not. This limits the scalability of this approach.

Somewhat inspired by ChEBI’s workflow, we suggest navigating the ontology scaling dilemma
by using a new kind of approach to ontology extension, which transfers the design decisions of
an existing ontology analogously to new classes and relations. Our starting point is an existing,
manually curated reference ontology. We suggest the use of machine learning methods to learn
some of the criteria that the ontology developers adopted in the development of the ontology,
and then use the learned model to extend the ontology to entities that have not been covered
by the manual ontology development process yet. We will illustrate this approach in this paper
for the chemistry use case by training an artificial neural network (with a Transformer-based
architecture) to automate the extension of ChEBI with new classes of chemical entities. The
approach has several benefits: since it builds on top of the existing ontology, the extension
will preserve the manually created consensus. Moreover, the model is trained solely on the
content of the ontology itself and does not rely on any external sources. Finally, as we will see,
the chosen architecture allows explanation of the choices of the neural network, and, thus to
validate the trained model to some degree by manual inspection.

In the next two sections we discuss related work and the overall methodology that we are
using to train a model for classifying new classes of chemical entity as subclasses of existing
classes in ChEBI.

2. Related Work

In this paper, we present a methodology for ontology extension, which can be considered
as a kind of ontology learning. Ontology learning has been an active area of research for
more than two decades [7, 8, 9, 10, 11] and a number of automated ontology generators have
been developed. A recent publication [11] defined a list of six desirable goals for ontology
learning methods: they should support expressive languages, require small amount of time and
training data, require limited or no human intervention, support unsupervised learning, handle
inconsistencies and noise, and their results should be interpretable. Note that in this paper, we
use the terms explainability and interpretability interchangeably. Sometimes explainability is



considered to be a stronger form of interpretability [12].
The fundamental make-up of the resulting ontologies varies widely – in part due to different

notions of what constitutes an ontology. A survey-based study by Biemann [9] defines three
classes of ontologies: formal, prototype-based and terminological ontologies. Most early and data-
driven approaches resulted in prototype-based ontologies, in which concepts are not defined in
natural language or by logical formulae, but solely by their members. New concepts are often
derived from metric-based aggregations such as hierarchical clustering [13]. The quality of the
resulting classification depends strongly on the chosen representation of individuals and the
criteria for similarity, and may not agree with distinctions that are used by domain experts.

Advances in natural language processing led to a different class of approaches - the termino-
logical ontologies. Here, artificial intelligence is used to analyse corpora of relevant literature
in order to extract important terms and their relations. Yet, these approaches reflect rather
than resolve the inherent ambiguities and differences in language use that exist within different
communities of domain experts or even within single communities. The resolution of these
ambiguities is an essential part of the ontology development process that involves extensive
in-depth communication with and between domain experts [3]. Finally, formal ontologies place
a strong emphasis on definitions distinguishing entities, and a rich logical axiomatisation that
yields a powerful foundation for reasoning and data integration [14, 15, 16].

While the majority of existing approaches in ontology learning focus on creating new on-
tologies from scratch, the ones that are dedicated to ontology extension use the ontology as a
seed to identify terms that are important for the target domain [17, 18, 19, 20, 21, 22]. These are
used to guide approaches that are similar to those that are applied to learn ontologies ’from
scratch’. Hence, the resulting extensions are not necessarily based on the principles that have
been employed to develop the ontology in the first place, and may potentially introduce biases
from the literature into the ontology. Some approaches involve several manual steps, in which
experts evaluate concepts and related phrases to sort out these potential issues [23]. Involving
human experts has the advantage of providing quality control, but is labour-intensive and costly.

Our approach differs from the existing work in that it employs machine learning techniques
but does not rely on text corpora. Rather, it relies only on the content of the ontology that is
being extended, in particular on structured annotations.

Our specific application domain is chemical ontology. One characteristic of chemical ontolo-
gies is the fact that many classes of chemical entities are annotated with information about their
chemical structure. Particularly important for our purposes are annotations in the Simplified
Molecular-Input Line-Entry System (SMILES) [24], which is used to represent chemical entities
as a linear sequence of characters. The SMILES notation is analogous to a language to describe
atoms and their bonds within a chemical entity.

In our approach, we train a deep learning classifier that is based on the ChemBERTa [25]
architecture. This chemistry-focused Transformer-based architecture has been successfully
employed for toxicity prediction. In the context of this work, it has been trained for the first
time on the structural annotations of an existing chemical ontology. The learning method biases
the classifier towards the ontology’s internal structure, yielding a model that is in line with the
domain experts’ conceptualisation as represented in the existing ontology. The resulting model
is then used to integrate previously unseen classes into the ontology.

This is a novel approach to the problem of chemical classification, which task has historically



been approached in multiple different ways [26]. Solutions that involve deep-learning methods
were successfully employed for many other applications in chemistry [27], such as the prediction
of properties of chemicals [28] or reaction behaviour [29]. Yet, the automated classification of
chemicals using deep learning according to an existing ontology has been largely unexplored.
The ClassyFire tool [6] is at the time of writing the most comprehensive method for structure-
based automated chemical ontology extension. However, it uses a rule-based and algorithmic
implementation that is cumbersome to maintain and is not able to adapt as the underlying
ontology changes.

In our previous work [30], we have evaluated several classifiers for this task, including a long
short-term memory (LSTM) model which was the best-performing overall. The results of this
effort were satisfactory as a whole, but several specific limitations were identified. In particular,
the model failed to provide any prediction for a subset of input molecules, and the system as
a whole offered no explainability. The current contribution harnesses a Transformer-based
architecture and describes how the attention weights of the resulting model can provide insights
into how the model made its decisions. Furthermore, by using transfer learning, a broader
applicability of this data- and compute-hungry method becomes computationally more feasible.

3. Methodology

Our goal is to train a system that automatically extends the ChEBI ontology with new classes of
chemical entities (such as molecules) based on the design decisions that are implicitly reflected
in the structure of ChEBI. Thus, for our work we take the ‘upper level’ of the ontology, which
contains generic distinctions, as given. Moreover, ChEBI is relatively weakly axiomatised,
consisting largely of a taxonomy supplemented by existentially restricted relationships. All
chemical entities in ChEBI are represented as classes and there are no individuals in the ontology.
Thus, the ontology extension task consists of adding classes and subsumption relationships.

Our focus is the extension of the ChEBI ontology with classes of chemical entities that may
be characterised by a SMILES string, i.e., they are associated with a specific chemical structure.
Chemical structures can typically only be specified for relatively specific types of chemical
entity, thus, although these classes are not necessarily leaf nodes in the ontological hierarchy,
they nevertheless tend to be in the ‘lower’ (more specific) part of the hierarchy.

The learning task for ontology extension may, thus, be characterised as follows: Given a class
of chemical entities (characterised by a SMILES string), what are its optimal direct superclasses in
ChEBI?

While our goal is – from an ontological point of view – to extend the ChEBI ontology with
new classes (i.e., adding new subsumptions), from a machine learning perspective we turned
this problem into a classification task, for which we prepare an appropriate learning dataset
from the ontology.

Hierarchical chemical classifications should group chemical compounds in a scientifically
valid and meaningful way [26, 31]. Each chemical entity has many structural features which
contribute to its potential structure-based classification and structures that determine different
classes may occur in a single molecule. Thus, ChEBI contains classes that overlap (i.e. share
members). The ChEBI ontology provides two separate classification hierarchies for the chemical



entities: one based on their structures and another based on their functions or uses. In the
current work, we focus on the structure-based sub-ontology. Entities in the structure-based sub-
ontology are often associated with specifications of their molecular structures, particularly – but
not exclusively – the leaf nodes within the classification hierarchy. In ChEBI, a chemical entity
with a defined structure can be the classification parent for another structurally defined entity,
since all entities are classes according to the ChEBI ontology, and there can be different levels
of specificity even amongst structurally defined classes. To formulate a supervised machine
learning problem, however, we need to create a distinction between those entities with chemical
structures that form the input for learning, and the chemical classes that they belong to that
form the learning target. This distinction is created by sampling structurally defined entities
only from the ontology leaf nodes.

As mentioned above, the SMILES notation is analogous to a language to describe atoms and
their bonds within a chemical structure. Intuitively, this leads to a correspondence between the
processing of chemical structures in this type of representation, and natural language processing
[32]. Therefore, architectures that have been successfully applied to language-based problems
can also be employed for this multi-label prediction task. One of these successful architectures
is Bidirectional Encoder Representations from Transformers (BERT) [33] – a precursor of the
Robustly optimized BERT, (RoBERTa) [34] architecture that our approach is based on. The BERT
architecture offers a learning paradigm that enables pre-training the model on unlabeled data
and then fine-tuning it for the ultimately desired task. Fine-tuning can be done by adding
one additional layer to the pre-trained model, without requiring major modifications to the
model’s architecture. BERT is pre-trained on two unsupervised tasks: Masked Language
Modeling (MLM), in which some tokens are randomly removed from the input sequences and
the model will train to predict the masked tokens, and Next Sentence Prediction (NSP), a binary
classification task that predicts whether or not the second sentence in the input sequence
follows the first sentence in the original text. The RoBERTa model is an extension of the BERT
model and it offers several improvements with minor changes in the pre-training strategy. The
RoBERTa model does not include the NSP part of BERT, and it employs a dynamic masking
approach as a replacement of the original masking scheme of BERT. While the original BERT
model only applies masking once during data preprocessing, the RoBERTa model dynamically
changes the masking pattern on each training sequence in every epoch. As a result, the model
gets exposed to different versions of the same input data with masks on various locations.

Since chemical structures in ChEBI typically belong to several ontology classes, the problem
of automated chemical entity categorization can be viewed as a multi-label prediction task.
Figure 1 shows the fentin hydroxide molecule and its parents in the ChEBI ontology: organotin
compound and hydroxides.

Our approach1 pre-trains a RoBERTa model on SMILES strings, and then predicts multiple
chemical class memberships. The overall architecture is shown in Figure 3. This architecture is
similar to the one that was used for molecular property prediction in Chithrananda et al. [25].

1https://github.com/adelmemariani/chebi-roberta
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Figure 1: Fentin hydroxide and its hierarchical classes. Blue lines indicate the sub-class relationships.

Figure 2: Left: class counts in the dataset. Right: Number of members per number of assigned classes

3.1. Dataset

To use the existing ontology classification as input to the learning task, the ontology first has to
be transformed into an appropriate form. The ontology classification is inherently unbalanced,
as different classes have different numbers of members and are partially overlapping. It is
therefore necessary to define a sampling strategy to select leaf node entities and classes to
minimize the impact on the training. In order to be able to compare our results to our earlier
findings, we have used the same dataset2 and sampling strategy as was used in Hastings et al.
[30]. Using only the hierarchical sub-class relations in the ChEBI ontology, this dataset was
created by randomly sampling leaf node molecular entities from higher-level classes that they
are subclasses of, using an algorithm that aimed to minimize (as far as possible) class overlap,
described in Section 3 of [30]. The resulting dataset contained a total of 500 molecule classes
and 31,280 molecules. Despite these balancing measures, it still suffers from certain imbalances.
Figure 2 (left) illustrates the number of times each class has appeared in the training and test
datasets. As illustrated, some of the classes appeared more frequently than others. Figure 2
(right) shows the number of members per number of associated classes. For example, 7,864
members have just one assigned class, whereas three members have 17 classes assigned. To train,
validate and test our model, we divided the dataset into three subsets; a training set containing
21,896 molecules, a validation set of 2,815 molecules, and a test set of 6,569 molecules.

3.2. Input Encodings

Tokenization is a pre-processing step used to create a vocabulary from textual data. It is applica-
ble at the character, word, or sub-word level. Pre-trained large-scale word embeddings such as

2https://doi.org/10.5281/zenodo.4519815
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Parameter Value

Number of attention heads 12
Number of hidden layers 6
Dropout for attention probabilities 0.1
Activation function in the encoder gelu
Activation for the classification layer sigmoid
Number of epochs in pre-training 100
Number of epochs in fine-tuning 30
Masked language modeling probability %15
Batch size 4
Loss function for pre-training BCELoss
Loss function for fine-tuning BCEWithLogitsLoss
Optimizer Adam with weight decay
Number of vocabularies (tokens) 1395
Number of trainable parameters 45,577,728
Tokenizer BPE

Table 1
(Hyper-)Parameters of the model

Figure 3
Architecture of our ontology extension approach

Word2Vec [35] and GloVe [36] employ word tokenization to generate vector representations for
words that can encapsulate their meanings, semantic connections, and the contexts in which
they are used. Transformer-based models rely on a subword tokenization algorithm that counts
the occurrences of each character pair in the dataset and incrementally adds the most frequently
occurring pairs to the vocabulary. In our previous work, Hastings et al. [30], we used two
strategies to encode the input sequences for the LSTM model: a character-level tokenization
and an atom-wise tokenization, where letter combinations that represent an atom were encoded
as a token. In the current work, we use the Byte Pair Encoding (BPE) algorithm as a sub-word
tokenization method with a RoBERTa architecture.

3.3. Experiment

To train the model, we used a single GPU. Table 1 shows the hyper-parameters for our model. We
firstly pre-trained our model based on masked language modelling for 100 epochs (unsupervised).
The pre-training step allows the model to discover common patterns in the SMILES strings by
attempting to predict the masked tokens using the unmasked tokens. As discussed in Section
3, the pre-trained model provides a proper starting point for training a model on a related
desired task. This starting point incorporates the trained weights of the model. Furthermore,
we validated the model on a separate dataset after each training epoch. The validation during
training has no effect on model’s trained weights, nevertheless, it helps in adjusting the model’s
hyper-parameters. Figure 4 (a) illustrates the loss values for the train and validation sets during
the pre-training phase. For the final multi-label classification task, we loaded the pre-trained
model and trained it for 30 epochs with the class labels (supervised). Figure 4 (b) shows the train
and validation loss during the fine-tuning step. Similarly, Fig. 4 (c) shows the F1 score for the
validation dataset during the fine-tuning.

4. Results and Evaluation

For our evaluations during and after training, we used the F1-score as the main measure. The
F1 score may be computed in different ways depending on the averaging scheme: (1) samples:



(a) (b) (c)

Figure 4: Train and validation loss: (a): pre-training (masked language modeling). (b): fine-tuning
(class prediction). (c): F1 score for the validation dataset, during the fine-tuning step.

Samples Macro Micro Weighted

LSTM RoBERTa LSTM RoBERTa LSTM RoBERTa LSTM RoBERTa

F1 0.66 0.76 0.71 0.77 0.74 0.80 0.73 0.79

Recall 0.66 0.75 0.68 0.76 0.70 0.78 0.70 0.78

Precision 0.67 0.77 0.77 0.80 0.79 0.82 0.79 0.82

ROC-AUC 0.83 0.87 0.84 0.89 0.85 0.88 0.85 0.89

Table 2
The comparison of the scores achieved by two models.

calculates the F1 score for each molecule in the test dataset and then computes their average.
(2) micro: collects the total number of true positives, false positives, and false negatives and
calculates the overall F1 score. (3) macro: calculates the F1 score for each class and then
computes their average. (4) weighted : this averaging scheme is similar to the macro F1 score,
but it calculates a weight for each class based on the number of true members in each class.
Table 2 and Fig. 5 compare the results of the current model with the previously obtained results
for the LSTM model from [30]. We saw an improvement in performance both when we look at
the distributions of values for the molecule-wise F1 scores (Figure 5a) and for the class-wise F1
scores (Figure 5b). A statistical comparison of the overall F1 score distributions shows that the
difference in F1 scores is statistically significant (𝑝 < 0.001, Figure 5c).

The raw output values of our model are the probabilities of a sigmoid function. Therefore, a
threshold value must be applied to these probabilities to produce a binary vector, indicating the
final classifications. These results are based on the classification threshold value of 0.5. The
precision – in our classification task – shows the ability of the model to not wrongly assign a
label to a molecule, while the recall score reflects the model’s capability to discover all labels
that were assigned to a molecule.

Self-attention in Transformer-based models enables the model to explore several locations in
the input sequence to produce a better embedding for the tokens. As a result, the embeddings
encode different contextual information for the same token in different positions (and different
sequences). The architecture of the RoBERTa model contains a stack of Transformers’ encoders,



(a) (b) (c)

Figure 5: F1 score on test dataset. (a): Kernel density diagram based on the molecules. (b): Histogram
diagram based on the classes. (c): Boxplots for the F1 scores of all 500 classes. A statistical test comparing
the two class-wise F1 scores distributions yields a p-value of less than 0.001, indicating the distributions
significantly differ.

each consisting of multiple attention heads. Since the attention heads do not share parameters,
each head learns a unique set of attention weights. Intuitively, attention weights determine the
importance of each token for the embeddings of the next layers [37]. In this sense, visualizing
the attention weights of Transformer-based models helps to interpret the model with respect to
the relative importance of different input items for making classifications [38]. While the benefit
of attention visualization may be limited in explaining particular predictions, depending on
the task, attention can be quite useful in explaining the model’s overall predictions [39, 40, 41].
In fact, attention heads can reveal a wide variety of model behaviors and some of these heads
may be more significant for model interpretation than others [38]. We examined how attention
corresponds to different chemical structural elements, at both the token and molecule level.
Figure 6 shows the averaged attention weights of all heads in the last encoder of the model.
The most attended sub-structures for each molecule are highlighted with green circles in the
molecular graphs. It can be observed that often, most attention (darker green) is given to the
heaviest atoms, for example bromine, iron and sulfur in Fig. 6 (a), (b) and (c) respectively. This
corresponds to the broad principles of classification in organic chemistry as captured in ChEBI.
The predicted classes in Fig. 6 demonstrate that the model learned to assign appropriate labels
to the chemical compounds. As illustrated in Fig. 6 (d), the model assigned the barbiturates
class to the corresponding molecule, which class refers to the family of chemicals that contain a
six-membered ring structure, which was also the structural element given the most attention.
Similarly, Fig. 6 (e) shows that the model focused most on the phosphate substructure when
assigning the phosphatidylinositol class to the molecule.

The presented model takes a given class of molecules, represented by a SMILES string,
and assigns the corresponding superclasses from the CHEBI ontology. ChEBI already makes
use of an automated tool to extend its coverage beyond the manually curated core, namely
ClassyFire. The model can be integrated into the ChEBI development process in the same way.
The resulting system can then be used to integrate the given class into the ontology and translate
the classification results into subsumption relations. Figure 8 shows the result of this process.
The implemented workflow, depicted in 3, is based on a model architecture and accompanying
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Figure 6: The model predicted class labels for these molecules by attending to influential sub-structures
(highlighted in green): (a) organobromine compound (b) iron molecular entity (c) arenesulfonic acid (d)
barbiturates (e) phosphatidylinositol

Attention to Oxygen atom Attention to Nitrogen atom Attention to Carbon atom

Figure 7: Each cell represents the percentage of all attentions (by each head) that was given to the
corresponding token. For example, head 5-6 in (b) dedicated 41.6% of its attention to the Nitrogen atom.

hyperparameters that have previously been used for chemical property prediction [25]. The
resulting model is then trained on the ontology data, which allows for the fully automated
extension of the ChEBI ontology.

5. Discussion

ChEBI uses ClassyFire, a rules-based system, to extend its manually curated reference ontology
to chemicals that are not yet covered. This approach has limitations, notably that ClassyFire
is structured around a different chemical ontology with only a partial mapping to ChEBI,
and ClassyFire’s rules are manually maintained. The deep-learning-based approach that we
presented can overcome the limitations of rules-based approaches by allowing dynamic creation
of classifiers based on a given existing ontology structure. Yet, for optimal applicability, the
approach must meet certain quality criteria. Ozaki [11] defined six goals for ontology extension,
which we use to structure our discussion of our results.
Handling of inconsistencies and noise Our model is trained on information that originated
solely from the ontology itself. This design decision eliminates external sources of inconsisten-
cies and noise. The comparison of the F1 scores in the table in Fig. 5 shows that this classification
outperforms the current state-of-the-art approaches - including the formerly leading LSTM-



Figure 8: The extended ontology. Existing subsumption relations (black) have been enriched with new
subclasses, shown with dashed borders. Correct subclass predictions are depicted with cyan, dashed
arrows, while red, dotted arrows indicate misclassifications.

based model. In particular, for those chemical classes that were the most challenging in the
previous approach, the current approach performed almost twice as well, as illustrated in Figure
5 (b). It should be noted that there nevertheless remain some chemical classes that perform
worse than others. For example, classes that are based on cyclic structures pose challenges, as
their information may be scattered around the respective SMILES strings. Alternative input for-
mats and network architectures may be explored in the future to better handle these structures.
The model may also benefit from a larger amount of data. The distribution of class memberships
depicted in Figure 2 indicates that the dataset features some classes far more often than others.
These classes are more prominent, often by virtue of being higher in the ontology subclass
hierarchy and, therefore, represent broader classes of chemicals that may share members with
other classes. Such an imbalance can skew the training in favour of those classes. Different
sampling and regularization techniques may be explored in the future to address this issue.
Unsupervised learning The presented approach is a variant of ontology extension. The
ontology is therefore a mandatory input, from which the information that is needed for the
ontology extension is extracted. The resulting dataset does include labels for each molecule.
Strictly speaking, it is thus a supervised learning approach. However, these labels are extracted
fully automatically from the input – the ontology. Therefore, no additional annotation by
experts or other manual data pre-processing is necessary.
Human interaction As the ontology is extended automatically, no interaction is required.
Expressivity The system extends the given ontology using the same ontology language that



has been used to build it. ChEBI is developed as an OWL ontology, which comes with expressive
OWL-DL semantics.
Interpretability The formerly best classifier was based on an LSTM architecture. This approach
outperformed ClassyFire, but this performance came with a disadvantage: The reason for a
specific classification was not transparent. This is problematic, because the experts that check
the ontology extension need insights into the system’s decision processes in order to evaluate
the classifications. An explainable approach is therefore crucial. The attention mechanism of
the RoBERTa architecture that has been used in the present approach helps to address this issue.
Attention weights can be seen as a measure of how much focus is put on an individual token. A
homogenous distribution of attention shows that nothing has been focused in particular, whilst
high attention on a head shows that a particular token had a high impact. Figure 7 shows that
carbon atoms, which are very common in organic chemistry, trigger a low general focus. At the
same time, a high focus is put on oxygen atoms, that often indicate functional groups of high
classificatory relevance, such as carboxy groups. Figure 6 shows which parts of a particular
molecule have been focused on during the classification process. This information can be used
to explain the decisions made by the model, raise trust in the prediction system, and aid the
experts during the ontology extension process.
Efficiency In [11] ‘efficiency’ is defined as the time it takes to build the ontology. Once the
model is fully trained, the classification which leads to the ontology extension only takes a few
minutes. As an example, classification of 6,569 chemical entities in our test dataset took around
10 minutes. While extending the ontology itself is fast, the training of the model requires more
time. Training is divided in pre-training and fine-tuning. The pre-training with 100 epochs
took around 10 hours. This time is only invested once, and thereafter a pre-trained model can
be fine-tuned repeatedly for several large sets of molecules and their corresponding classes
comparatively quickly. Our final fine-tuning for 30 epochs took around 2 hours.

This analysis shows that the presented approach achieves the goals of ontology learning
stipulated in [11]. One additional issue that needs to be addressed is applicability. At the heart
of the presented approach is a neural network that is trained based on the annotations of the
ontology. In the same way as any text analysis approach to ontology generation is dependent
on the existence of suitable text corpora, our approach requires that the ontology contains
enough information to train a model to predict the superclasses of a new class. ChEBI is an
ideal use case, because SMILES annotations provide rich, structured information that we could
harness for training the model. Another potential application domain for our approach in
biology are proteins, which are also classified based on structures, features of which can be
annotated in the relevant ontology. Moreover, our approach is not limited to ontologies with
structural information represented in annotations. E.g., for ontologies in material science one
could consider training the model based on the physical properties (e.g., density, hardness,
thermal conductivity), which are typically represented using data properties. In short, our
approach to ontology extension is applicable to reference ontologies that associate classes
with sufficient information that a neural network may learn the classification criteria that the
ontology developers are using.



6. Conclusion and Future Work

We have presented a novel approach to the problem of ontology extension, applied to the
chemical domain. Instead of extending the ontology using external resources, we created a
model using the ontology’s own structured annotations. This Transformer-based model can
not only classify previously unseen chemical entities (such as molecules) into the appropriate
classes, but also provides information about relevant aspects of its internal structure on which
the decision is based. At the same time, it was able to outperform previously existing approaches
to ontology-based chemical classification in terms of predictive performance.

However, the trained model still struggles with several chemical classes that depend on
specific structural features. E.g, classes that exhibit cyclic structures are often found in the lower
quantile of classification quality. This behaviour can be traced back to the way molecules are
encoded into the SMILES notation. This weakness might be addressed by using architectures
that operate directly on the molecular structures, such as Graph Neural Networks [42].

We have illustrated our approach by applying it to the chemical domain, but as we discussed
in Section 5, the approach is applicable to any ontology that contains classes that are annotated
with information that is relevant to their position in the class hierarchy.

While our approach supports an automatic extension of an ontology, it can also be used in a
semi-automated fashion to help ontology developers in their manual curation of the ontology.
Since the model is trained based on the content of a manually curated ontology, improving
and extending this ontology will lead to better quality training data and, thus, enable better
predictions. Hence, there is a potential for a positive feedback loop betweenmanual development
and the AI-based extension.

One limitation of our current approach is that it does not use most of the logical axioms of
the ontology during the learning process. The logical axioms within the ontology could be used
to detect possible inconsistencies between the predicted classes and the ontology’s axioms. A
logic-based framework could then be employed to detect those results that were most likely
mis-classifications. Another strategy to address this gap would be to represent the axioms in
the form of Logical Neural Networks [43] in order to detect possible inconsistencies already in
the learning process and to penalise them accordingly. Overall, there is still a pressing need
for research in the field of (semi-)automatic ontology extension. Here, the growing field of
neuro-symbolic integration can serve as the interface between formal ontologies and the power
of deep learning. The possibility of incorporating explanations may further the understanding of
the inner workings of artificial intelligence systems and, therefore, raise trust in these systems.
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