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1. Extended Abstract

Explainable AI (XAI) has been identified as a key factor for developing trustworthy AI systems [1,

2]. The reasons for equipping intelligent systems with explanation capabilities are not limited to

user rights and acceptance. Explainability is also needed for designers and developers to enhance

system robustness and enable diagnostics to prevent bias, unfairness, and discrimination, as

well as to increase trust by all users in why and how decisions are made [3].

The interpretability of AI systems has been described long time ago since mid 1980s [4],

but until recently it becomes an active research focus in computer science community due to

the advances of big data and various regulations of data protection in developing AI systems,

such as the GDPR. For example, according to the GDPR, citizens have the legal right to an

explanation of decisions made by algorithms that may affect them (e.g., see Article 22). This

policy highlights the pressing importance of transparency and interpretability in algorithm

design.

XAI focuses on developing new approaches for explanations of black-box models by achieving

good explainability without sacrificing system performance. In the ML literature, techniques for

explaining black-box models are typically classified as local and global methods [5]. Whilst local

methods take into account specific examples and provide local explanations, global methods aim

to provide an overall approximation of the behavior of the black-box model. Global explanations

are usually preferable over local explanations, because they provide a more general view about

the decision making process of a black-box.
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Other approaches are based on hybrid or neuro-symbolic systems, advocating a tight integra-

tion between symbolic and non-symbolic knowledge, e.g., by combining symbolic and statistical

methods of reasoning [6]. The construction of hybrid systems is widely seen as one of the grand

challenges facing AI today. However, there is no consensus regarding how to achieve this, with

proposed techniques in the literature ranging from knowledge extraction and tensor logic [7]

to inductive logic programming and other approaches.

Knowledge representation—in its many incarnations as ontologies, knowledge graphs, etc.—is

a key asset to enact hybrid systems, and it can pave the way towards the creation of trans-

parent and human-centric explainable knowledge-enabled systems [8]. Linking explanations

to structured knowledge, for instance in the form of ontologies, brings multiple advantages.

First, they can be used to provide a sound and machine interpretable conceptualisation of

the system, facilitating knowledge sharing and reuse. In this way it is easier to capture user

requirements and promote the reuse of components [9]. Second, they can be used not only

to enrich explanations (or the elements therein) with semantic information—thus facilitating

evaluation and effective knowledge transmission to users—but they also create a potential

for supporting the customisation of the levels of specificity and generality of explanations to

specific user profiles or audiences [10].

This extended abstract builds on the work presented in [11] which describes an extension

of Trepan, a seminal global explanation approach that extracts surrogate decision trees from

black-box models. Trepan was extended to take into account explicit knowledge, modeled by

means of ontologies, to extract human-understadable explanations.

Trepan is a tree induction algorithm that recursively extracts decision trees from oracles, in

particular from feed-forward neural networks [12]. The algorithm is model-agnostic, and it can

be applied to explain any black-box classifier (e.g., Multi-Layer Perceptron, Random Forest).

Trepan combines the learning of the decision tree with a trained machine learning classifier

(the oracle).

The proposed extension of the Trepan algorithm, called Trepan Reloaded, uses a modified

information gain that, in the creation of split nodes, gives priority to features associated with

more general concepts defined in a domain ontology. This was achieved by means of an

information content measures defined using the idea of refinement operators [13].

The understandability of the extracted explanations was tested with humans in a user study

with four different tasks. Results were evaluated in terms of response times and correctness,

subjective ease of understanding and confidence, and similarity of free text responses. The

results showed that decision trees generated with Trepan Reloaded, taking into account do-

main knowledge, were significantly more understandable throughout than those generated

by standard Trepan. The enhanced understandability of post-hoc explanations was achieved

with little compromise on the accuracy with which the surrogate decision trees replicate the

behaviour of the original neural network models.
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